
Introduction to OpenMP
HPC Workshop: Parallel Programming

Alexander B. Pacheco

Research Computing

http://researchcomputing.lehigh.edu

Distributed Memory Model

Each process has its own address space
Data is local to each process

Data sharing is achieved via explicit message passing
Example

MPI

Network

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache

Main
Memory

CPU

Cache

OpenMP 2 / 49 Lehigh University Research Computing

Shared Memory Model

All threads can access the global memory space.
Data sharing achieved via writing to/reading from the same memory
location
Example

OpenMP
Pthreads

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

OpenMP 3 / 49 Lehigh University Research Computing

Clusters of SMP nodes

The shared memory model is most commonly represented by
Symmetric Multi-Processing (SMP) systems

Identical processors
Equal access time to memory

Large shared memory systems are rare, clusters of SMP nodes are
popular.

Network

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

Main Memory

Cache

CPU

Cache

CPU

Cache

CPU

Cache

CPU

OpenMP 4 / 49 Lehigh University Research Computing

Shared vs Distributed

Shared Memory
Pros

Global address space is user friendly
Data sharing is fast

Cons
Lack of scalability
Data conflict issues

Distributed Memory
Pros

Memory scalable with number of processors
Easier and cheaper to build

Cons
Difficult load balancing
Data sharing is slow

OpenMP 5 / 49 Lehigh University Research Computing

Parallelizing Serial Code

Compiler Flags for Automatic Parallelization
GCC -floop-parallelize-all
Intel -parallel
NVHPC -Mconcur

When to consider using OpenMP?
The compiler may not be able to do the parallelization

1 A loop is not parallelized
The data dependency analysis is not able to determine whether it is safe to
parallelize or not

2 The granularity is not high enough
The compiler lacks information to parallelize at the highest possible level

OpenMP 6 / 49 Lehigh University Research Computing

OpenMP

OpenMP is an Application Program Interface (API) for thread based
parallelism; Supports Fortran, C and C++
Uses a fork-join execution model
OpenMP structures are built with program directives, runtime libraries
and environment variables
OpenMP has been the industry standard for shared memory
programming since 1997

Permanent members of the OpenMP Architecture Review Board: AMD,
Cray, Fujutsu, HP, IBM, Intel, Microsoft, NEC, PGI, SGI, Sun

OpenMP 4.0 was released in June 2014

OpenMP 7 / 49 Lehigh University Research Computing

Goals of OpenMP

Standardization
Provide a standard among a variety of shared memory
architectures/platforms
Jointly defined and endorsed by a group of major computer hardware and
software vendors

Lean and Mean
Establish a simple and limited set of directives for programming shared
memory machines.
Significant parallelism can be implemented by using just 3 or 4 directives.

Ease to use
Serial programs can be parallelized by adding compiler directives
Allows for incremental parallelization - a serial program evolves into a
parallel program by parallelizing different sections incrementally

Portability
Standard among many shared memory platforms
Implemented in major compiler suites

OpenMP 8 / 49 Lehigh University Research Computing

Fork-Join Execution Model

Parallelism is achieved by generating multiple threads that run in
parallel

A fork F is when a single thread is made into multiple, concurrently
executing threads
A join J is when the concurrently executing threads synchronize back
into a single thread

OpenMP programs essentially consist of a series of forks and joins.

Parallel
Region

Serial
Region

F J F J

OpenMP 9 / 49 Lehigh University Research Computing

Building Block of OpenMP

Program directives
Syntax

C/C++: #pragma omp <directive> [clause]
Fortran: !$omp <directive> [clause]

Parallel regions
Parallel loops
Synchronization
Data Structure
· · ·

Runtime library routines
Environment variables

OpenMP 10 / 49 Lehigh University Research Computing

OpenMP Basic Syntax

Fortran: case insensitive
Add: use omp_lib or include "omp_lib.h"
Usage: Sentinel directive [clauses]
Fortran 77

Sentinel could be: !$omp, *$omp, c$omp and must begin in first column
Fortran 90/95/2003

Sentinel: !$omp

End of parallel region is signified by the end sentinel statement: !$omp
end directive [clauses]

C/C++: case sensitive
Add #include <omp.h>
Usage: #pragma omp directive [clauses] newline

OpenMP 11 / 49 Lehigh University Research Computing

Compiler Directives

Parallel Directive
parallel

Worksharing Constructs
Fortran: do, workshare
C/C++: for
Fortran/C/C++: sections

Synchronization
master, single, ordered, flush, atomic

OpenMP 12 / 49 Lehigh University Research Computing

Clauses

if(scalar_expression)
private(list), shared(list)
firstprivate(list), lastprivate(list)
reduction(operator:list)
schedule(method[,chunk_size])
nowait
num_thread(num)
threadprivate(list), copyin(list)
ordered
more · · ·

OpenMP 13 / 49 Lehigh University Research Computing

Runtime Libraries

Number of Threads: omp_{set,get}_num_threads
Thread ID: omp_get_thread_num
Scheduling: omp_{set,get}_dynamic
Nested Parallelism: omp_in_parallel
Locking: omp_{init,set,unset}_lock
Wallclock Timer: omp_get_wtime
more · · ·

OpenMP 14 / 49 Lehigh University Research Computing

Environment Variables

OMP_NUM_THREADS
OMP_SCHEDULE
OMP_STACKSIZE
OMP_DYNAMIC
OMP_NESTED
OMP_WAIT_POLICY
more · · ·

OpenMP 15 / 49 Lehigh University Research Computing

Parallel Directive

The parallel directive forms a team of threads for parallel execution.
Each thread executes the block of code within the OpenMP Parallel
region.

C
#include <stdio.h>

int main() {

#pragma omp parallel
{
printf(”Hello world\n”);

}

}

Fortran
program hello

implicit none

!$omp parallel
print *, ’Hello World’
!$omp end parallel

end program hello

OpenMP 16 / 49 Lehigh University Research Computing

Compiling and Running OpenMP programs
Compiling: compiler options code

The OpenMP compile flag varies based on the compiler
GNU: -fopenmp
Intel: -qopenmp

NVHPC: -mp
[a lp 514 . s o l] (1032) : gcc - fopenmp -o h e l l o c h e l l o . c
[alp 514 . s o l] (1033) : i f o r t -qopenmp -o h e l l o f h e l l o . f 9

0

Running : Need to specify number of openmp threads to run code on

[a lp 514 . hawk - b624] (1001) : OMP_NUM_THREADS=4 ./ h e l l o c
Hel lo world
Hel lo world
Hel lo world
Hel lo world
[alp 514 . hawk - b624] (1002) : export OMP_NUM_THREADS=2
[alp 514 . hawk - b624] (1003) : . / h e l l o f
Hel lo World
Hel lo World

OpenMP 17 / 49 Lehigh University Research Computing

Parallel Directive

The number of threads in a parallel region is determined by the
following factors, in order of precedence:

Evaluation of the IF clause
Setting of the NUM_THREADS clause
Use of the omp_set_num_threads() library function
Setting of the OMP_NUM_THREADS environment variable
Implementation default

Threads are numbered from 0 (master thread) to N-1

OpenMP 19 / 49 Lehigh University Research Computing

Hello World: C

#include <omp.h>
#include <stdio.h>
int main () {

#pragma omp parallel
{

printf("Hello from thread %d out of %d
threads\n”,omp_get_thread_num() ,
omp_get_num_threads());

}
return 0;

}

OpenMP include file

Parallel region starts here

Runtime library functions

Parallel region ends here

Hello from thread 0 out of 4 threads
Hello from thread 3 out of 4 threads
Hello from thread 1 out of 4 threads
Hello from thread 2 out of 4 threads

OpenMP 20 / 49 Lehigh University Research Computing

Hello World: Fortran

program hello

implicit none
integer :: omp_get_thread_num, omp_get_num_threads

!$omp parallel

print ’(a,i3,a,i3,a)’, ’Hello from thread’,
omp_get_thread_num() , &
’ out of ’ omp_get_num_threads(),’ threads’

!$omp end parallel
end program hello

Parallel region starts here

Runtime library functions

Parallel region ends here

Hello from thread 0 out of 4 threads
Hello from thread 2 out of 4 threads
Hello from thread 1 out of 4 threads
Hello from thread 3 out of 4 threads

OpenMP 21 / 49 Lehigh University Research Computing

Exercise 1: Hello World

Write a “hello world” program with OpenMP where
1 If the thread id is odd, then print a message "Hello world from thread x,

I’m odd!”
2 If the thread id is even, then print a message "Hello world from thread x,

I’m even!”
Running the example interactively, say you compiled the code as helloc
srun -p hawkgpu -n 6 - t 30 -A hpc2022_prog_083122 - -

reservat ion=hpc2022_prog_083122_183 - - pty /bin/bash
export OMP_NUM_THREADS=6
./ he l l oc

Run from the head node:
export OMP_NUM_THREADS=6
srun -p hawkgpu -n 6 - t 30 -A hpc2022_prog_083122 - -

reservat ion=hpc2022_prog_083122_183 ./ he l l oc

Alternate way to run from the head node:
srun -p hawkgpu -n 1 - c 6 - t 30 -A hpc2022_prog_083122 - -

reservat ion=hpc2022_prog_083122_183 - - export=
OMP_NUM_THREADS=6 ./ he l l oc

OpenMP 22 / 49 Lehigh University Research Computing

Solution

C/C++
#include <omp.h>
#include <stdio.h>
int main() {
int id;

#pragma omp parallel private(id)
{
id = omp_get_thread_num();
if (id%2==1)
printf(”Hello world from thread %d, I am

odd\n”, id);
else
printf(”Hello world from thread %d, I am

even\n”, id);
}

}

[alp514.hawk-b624](1003): icc -o hello -qopenmp hello.c
[alp514.hawk-b624](1004): icc -o helloc -qopenmp hello.c
[alp514.hawk-b624](1005): OMP_NUM_THREADS=4 ./helloc
Hello world from thread 0, I am even
Hello world from thread 2, I am even
Hello world from thread 1, I am odd
Hello world from thread 3, I am odd

Fortran
program hello
use omp_lib
implicit none
integer i
!$omp parallel private(i)
i = omp_get_thread_num()
if (mod(i ,2).eq.1) then
print *, ’Hello from thread’ ,i , ’ , I am odd!

’
else
print *, ’Hello from thread’ ,i , ’ , I am even

! ’
endif
!$omp end parallel

end program hello

[alp514.hawk-b624](1006): ifort -qopenmp -o hellof hello.f90
[alp514.hawk-b624](1007): export OMP_NUM_THREADS=4
[alp514.hawk-b624](1008): ./hellof
Hello from thread 0 , I am even!
Hello from thread 2 , I am even!
Hello from thread 1 , I am odd!
Hello from thread 3 , I am odd!

OpenMP 23 / 49 Lehigh University Research Computing

Work Sharing

We need to share work among threads to achieve parallelism

Loops
!$omp do

#pragma omp for

Sections
!$omp sections

#pragma sections

Single
!$omp single

#pragma omp single

The parallel and work sharing directive can be combined as
!$omp parallel do
#pragma omp parallel sections

OpenMP 24 / 49 Lehigh University Research Computing

Example: Parallel Loops

C/C++

#include <omp.h>

int main () {
int i = 0 , n = 100 , a [100

] ;
#pragma omp pa ra l l e l f o r
fo r (i = 0 ; i < n ; i++) {

a [i] = (i+1) * (i+2) ;
}

}

Fortran
program para l l e ldo

imp l i c i t none
integer : : i , n , a(100)

i = 0
n = 100
!$omp pa ra l l e l
!$omp do
do i = 1 , n

a(i) = i * (i+1)
end do
!$omp end do
!$omp end pa r a l l e l

end program para l l e ldo

OpenMP 25 / 49 Lehigh University Research Computing

Load Balancing I

OpenMP provides different methods to divide iterations among threads,
indicated by the schedule clause

Syntax: schedule (<method>, [chunk size])
Methods include

Static: the default schedule; divide interations into chunks according to
size, then distribute chunks to each thread in a round-robin manner.
Dynamic: each thread grabs a chunk of iterations, then requests another
chunk upon completion of the current one, until all iterations are executed.
Guided: similar to Dynamic; the only difference is that the chunk size
starts large and shrinks to size eventually.

OpenMP 26 / 49 Lehigh University Research Computing

Load Balancing II

4 threads, 100 iterations
Schedule Iterations mapped onto thread

0 1 2 3
Static 1-25 26-50 51-75 76-100

Static,20 1-20, 81-100 21-40 41-60 61-80
Dynamic 1, · · · 2, · · · 3, · · · 4, · · ·

Dynamic,10 1− 10, · · · 11− 20, · · · 21− 30, · · · 31− 40, · · ·

OpenMP 27 / 49 Lehigh University Research Computing

Load Balancing III

Schedule When to Use

Static
Even and predictable workload per iteration;
scheduling may be done at compilation time,
least work at runtime.

Dynamic Highly variable and unpredictable workload
per iteration; most work at runtime

Guided
Special case of dynamic scheduling;
compromise between load balancing and
scheduling overhead at runtime

OpenMP 28 / 49 Lehigh University Research Computing

Work Sharing: Sections

Gives a different block to each thread

C/C++

#pragma omp pa ra l l e l
{

#pragma omp sect ions
{

#pragma omp sect ion
some_calculation () ;

#pragma omp sect ion
some_more_calculation

() ;
#pragma omp sect ion

yet_some_more_calculation
() ;

}
}

Fortran
! $omp pa ra l l e l
!$omp sect ions
!$omp sect ion
c a l l some_calculation
!$omp sect ion
c a l l some_more_calculation
!$omp sect ion
c a l l

yet_some_more_calculation

!$omp end sect ions
!$omp end pa r a l l e l

OpenMP 29 / 49 Lehigh University Research Computing

Scope of variables

Shared(list)
Specifies the variables that are shared among all threads

Private(list)
Creates a local copy of the specified variables for each thread
the value is uninitialized!

Default(shared|private|none)
Defines the default scope of variables
C/C++ API does not have default(private)

Most variables are shared by default
A few exceptions: iteration variables; stack variables in subroutines;
automatic variables within a statement block.

OpenMP 30 / 49 Lehigh University Research Computing

Exercise: SAXPY

SAXPY is a common operation in computations with vector processors
included as part of the BLAS routines
y ← αx+ y

SAXPY is a combination of scalar multiplication and vector addition
Parallelize the code in the exercise/saxpy folder
Calculate the speedup with respect to serial code.

OpenMP 31 / 49 Lehigh University Research Computing

SAXPY Timing

Threads C Fortran
Timing (s) Speed Up Timing (s) Speed Up

1 0.513491 1.00 0.504534 1.00
2 0.264634 1.94 0.300650 1.68
3 0.177902 2.89 0.234661 2.15
4 0.135248 3.80 0.150547 3.35
5 0.109646 4.68 0.120734 4.18
6 0.087660 5.86 0.100535 5.02
12 0.056454 9.10 0.050300 10.03
24 0.048442 10.60 0.026623 18.95
48 0.026348 19.49 0.025263 19.97

OpenMP 32 / 49 Lehigh University Research Computing

Pitfalls: False Sharing

Array elements that are in the same cache line can lead to false sharing.
The system handles cache coherence on a cache line basis, not on a byte
or word basis.
Each update of a single element could invalidate the entire cache line.

! $omp pa ra l l e l
myid = omp_get_thread_num

()
nthreads =

omp_get_numthreads ()
do i = myid+1 , n ,

nthreads
a(i) = some_function (i)

end do
!$omp end pa r a l l e l

OpenMP 33 / 49 Lehigh University Research Computing

Pitfalls: Race Condition

Multiple threads try to write to the same memory location at the same
time.

Indeterministic results

Inappropriate scope of varibale can cause indeterministic results too.
When having indeterministic results, set the number of threads to 1 to
check

If problem persists: scope problem
If problem is solved: race condition

! $omp pa ra l l e l do
do i = 1 , n

i f (a(i) > max) then
max = a(i)

end i f
end do
!$omp end pa r a l l e l do

OpenMP 34 / 49 Lehigh University Research Computing

Synchronization: Barrier

“Stop sign” where every thread waits until all threads arrive.
Purpose: protect access to shared data.
Syntax:

Fortran: !$omp barrier
C/C++: #pragma omp barrier

A barrier is implied at the end of every parallel region
Use the nowait clause to turn it off

Synchronizations are costly so their usage should be minimized.

OpenMP 35 / 49 Lehigh University Research Computing

Synchronization: Crtitical and Atomic

Critical
Only one thread at a time can enter a critical
region

! $omp pa ra l l e l do
do i = 1 , n

b = some_function (i)
!$omp c r i t i c a l
c a l l some_routine (b , x)

end do
!$omp end pa r a l l e l do

Atomic
Only one thread at a time can update a memory
location

! $omp pa ra l l e l do
do i = 1 , n

b = some_function (i)
!$omp atomic
x = x + b

end do
!$omp end pa r a l l e l do

OpenMP 36 / 49 Lehigh University Research Computing

Private Variables

Not initialized at the beginning of parallel region.
After parallel region

Not defined in OpenMP 2.x
0 in OpenMP 3.x

tmp not initialized here

void wrong()
{

int tmp = 0;
#pragma omp for private(tmp)
for (int j = 0; j < 100; ++j)
tmp += j
printf(”%d\n”, tmp)

}

OpenMP 2.5: tmp undefined OpenMP 3.0: tmp is 0

OpenMP 37 / 49 Lehigh University Research Computing

Special Cases of Private

Firstprivate
Initialize each private copy with the corresponding value from the master
thread

Lastprivate
Allows the value of a private variable to be passed to the shared variable
outside the parallel region

tmp initialized as 0

void wrong()
{

int tmp = 0;
#pragma omp for firstprivate(tmp) lastprivate(tmp)
for (int j = 0; j < 100; ++j)

tmp += j
printf(”%d\n”, tmp)

}

The value of tmp is the value when j=99

OpenMP 38 / 49 Lehigh University Research Computing

Exercise: Calculate pi by Numerical Integration

We know that∫ 1

0

4.0

(1 + x2)
dx = π

So numerically, we can
approxiate pi as the sum of a
number of rectangles

N∑
i=0

F (xi)∆x ≈ π

Meadows et al, A “hands-on”
introduction to OpenMP,
SC09
Parallelize the code in the
exercise/calc_pi folder

OpenMP 39 / 49 Lehigh University Research Computing

Reduction

The reduction clause allows accumulative operations on the value of
variables.
Syntax: reduction (operator:variable list)
A private copy of each variable which appears in reduction is created
as if the private clause is specified.
Operators

1 Arithmetic
2 Bitwise
3 Logical

OpenMP 42 / 49 Lehigh University Research Computing

Example: Reduction

C/C++

#include <omp.h>
int main () {

int i , n = 100 , sum , a [10
0] , b [100] ;

f o r (i = 0 ; i < n ; i++) {
a [i] = i ;
b [i] = 1 ;

}
sum = 0 ;

#pragma omp pa ra l l e l f o r
reduction (+:sum)

for (i = 0 ; i < n ; i++) {
sum += a [i] * b [i] ;

}
}

Fortran
program reduction

imp l i c i t none
integer : : i , n , sum , a(1

00) , b(100)

n = 100 ; b = 1 ; sum = 0
do i = 1 , n

a(i) = i
end do
!$omp pa ra l l e l do

reduction (+:sum)
do i = 1 , n

sum = sum + a(i) * b(i)
end do
!$omp end pa r a l l e l do

end program reduction
OpenMP 43 / 49 Lehigh University Research Computing

Exercise 3: pi calculation with reduction

Redo exercise 2 with reduction

OpenMP 44 / 49 Lehigh University Research Computing

Exercise: Matrix Multiplication

Most Computational code involve matrix operations such as matrix
multiplication.
Consider a matrix C of two matrices A and B:
Element i,j of C is the dot product of the ith row of A and jth column
of B

Parallelize the code in the exercise/matmul folder
Calculate the speedup with respect to serial code.

OpenMP 46 / 49 Lehigh University Research Computing

Runtime Library Functions

Modify/query the number of threads
omp_set_num_threads(), omp_get_num_threads(),
omp_get_thread_num(), omp_get_max_threads()

Query the number of processors
omp_num_procs()

Query whether or not you are in an active parallel region
omp_in_parallel()

Control the behavior of dynamic threads
omp_set_dynamic(),omp_get_dynamic()

OpenMP 47 / 49 Lehigh University Research Computing

Environment Variables

OMP_NUM_THREADS: set default number of threads to use.
OMP_SCHEDULE: control how iterations are scheduled for parallel
loops.

OpenMP 48 / 49 Lehigh University Research Computing

References

https://www.openmp.org/
OpenMP API 5.1 Specification
OpenMP 4.5 Reference Guide Fortran
OpenMP 4.5 Reference Guide C/C++
Using OpenMP Portable Shared Memory Parallel Programming -
Barbara Chapman, Gabriele Jost and Ruud van der Pas
https://www.openmp.org/resources/tutorials-articles/
https://www.openmp.org/resources/openmp-books/
http://en.wikipedia.org/wiki/OpenMP
https://hpc.llnl.gov/tuts/openMP
https://www.hpc-training.org/xsede/moodle

OpenMP 49 / 49 Lehigh University Research Computing

https://www.openmp.org/
https://www.openmp.org/spec-html/5.1/openmp.html
https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-F-web.pdf
https://www.openmp.org/wp-content/uploads/OpenMP-4.5-1115-CPP-web.pdf
https://mitpress.mit.edu/books/using-openmp
https://mitpress.mit.edu/books/using-openmp
https://www.openmp.org/resources/tutorials-articles/
https://www.openmp.org/resources/openmp-books/
http://en.wikipedia.org/wiki/OpenMP
https://hpc.llnl.gov/tuts/openMP
https://www.hpc-training.org/xsede/moodle

