Creating Documents with \LaTeX and Overleaf

Alexander B. Pacheco

Research Computing
Manager of Research Computing, Library & Technology Services.
 ◆ administer High Performance Computing (HPC) Clusters,
 ◆ support Computational Science & Engineering research on HPC.
 ◆ Weekly HPC Seminars (https://go.lehigh.edu/hpcseminars)
 ◆ More detailed LaTeX seminar on March 26.
Ph. D. (Chemistry) from University of Florida.
Started using LaTeX in Graduate School circa 1999 for
 ◆ Presentations and Posters
 ◆ Journal Articles and Research Reports
 ◆ Dissertation
 ◆ CV’s and Cover Letters
Introduction
Overleaf
Getting Started
\LaTeX\ Basics
Document Structure
Typesetting
Wrap Up
Introduction

What is \TeX?
What is \LaTeX?
Advantages of \LaTeX?
Disadvantages of \LaTeX?
\[\text{\LaTeX} \text{ is a low-level markup and programming language created by Donald Knuth to typeset documents attractively and consistently.} \]

\[\text{\LaTeX} \text{ is a programming language in the sense that it supports the if-else construct: you can make calculations with it (that are performed while compiling the document), etc., but you would find it very hard to do anything else but typesetting with it.} \]

\[\text{The fine control \LaTeX offers over document structure and formatting makes it a powerful and formidable tool.} \]

\[\text{\LaTeX is renowned for being extremely stable, for running on many different kinds of computers, and for being virtually bug free.} \]

\[\text{\LaTeX is a popular means by which to typeset complex mathematical formulae; it has been noted as one of the most sophisticated digital typographical systems in the world.} \]

\[\text{Programming in \LaTeX generally progresses along a very gradual learning curve, requiring a significant investment of time to build custom macros for text formatting.} \]

\[\text{Document preparation systems based on \LaTeX, consisting of collections of pre-built macros, exist making it easier for the user to create documents without the need to learn the \LaTeX language.} \]
\LaTeX{} is a macro package based on \TeX{} created by Leslie Lamport.

- Its purpose is to simplify \TeX{} typesetting, especially for documents containing mathematical formulae.
- Popular in academia, especially in mathematics, computer science, economics, engineering, physics, statistics, and quantitative psychology.
- Many of the academic publishing houses such as American Institute of Physics, Elsevier, etc provide templates to prepare manuscripts in \LaTeX{}.
- Since \LaTeX{} comprises a group of \TeX{} commands, \LaTeX{} document processing is essentially programming.
- Using \LaTeX{} to create documents is a WYSIWYM (What You See Is What You Mean) approach rather than WYSIWYG (What You See Is What You Get) approach of Microsoft Word and Libre Office.
- In \LaTeX{}, you create a text file in \LaTeX{} markup, which then needs to be compiled to produce the final document, most commonly is postscript (ps) or portable document format (pdf).
- The final document can be viewed uniformly on any Operating System using any version of the document viewer.
Advantages of \LaTeX?

- Document sources can be read with any text editor.
- You can concentrate purely on the structure and contents of the document, not get caught up with superficial layout issues.
- You don’t need to manually adjust fonts, text sizes, line heights, or text flow for readability, as \LaTeX takes care of them automatically.
- In \LaTeX the document structure is visible to the user, and can be easily copied to another document.
- The layout, fonts, tables and so on are consistent throughout the document.
- Mathematical formulae can be easily typeset.
- Indexes, footnotes, citations and references are generated easily.
- Since the document source is plain text, tables, figures, equations, etc. can be generated programmatically with any language.
- You are forced to structure your documents correctly.
Disadvantages of LaTeX?

- \LaTeX{} is WYSIWYM and not WYSIWYG approach
 i.e. you can’t see what the final version will look like while typing.
- You need to know the necessary commands for the markup language.
 i.e. there is no drop-down menu to create the document content such as equations, tables, inserting figures etc, you need to know how to enter those in a text editor.
- It can sometimes be difficult to obtain a certain look for the document.
an online collaborative writing and publishing tool that makes the whole process of writing, editing and publishing scientific documents much quicker and easier.

- provides the convenience of an easy-to-use \LaTeX \textnormal{editor} with real-time collaboration and the fully compiled output produced automatically in the background as you type.

- makes the journal submission process smoother for \LaTeX \textnormal{users} across many academic publishers.

Why use Overleaf?

- cloud based product that only needs a web browser.
- effortless sharing with collaborators.
- compiles your project in the background, so you can see the output PDF right away.
- real-time commenting and integrated chat, you can discuss your work without having to switch to email, printed versions or any other tool.
- Rich Text and \LaTeX \textnormal{modes} if you prefer to see less of the code when you’re writing
- Overleaf shows you errors and warnings as you go, so you can catch them early, and it shows them inline, so you don’t have to find them in the \LaTeX log.
- Write your thesis, create a calendar, make amazing presentations with the beamer package and create posters to showcase your work, all from a wide selection of popular templates.
- The real-time preview also helps when you’re working with complicated tables, tikz figures and pgfplots graphs.
Overleaf Professional accounts are for students, faculty and staff.

- Unlimited collaborators
- Full document history
- Reference Manager Sync
- Dropbox and Git/Github integration
- 20GB of storage

Hassle-free license management - users simply register with their institutional email address on Overleaf (or add it to their existing Overleaf account) to join your Overleaf Commons license and receive their upgrade automatically.
Visit https://www.overleaf.com/register

- Sign up with your email address, Google or ORCID.
 - Your Lehigh email address and Google account is valid as long as you are a student, staff or faculty.
 - Your Overleaf account is tied to the registered email address. If your email address is deactivated, you lose access to your overleaf account.
 - Consider using your personal email or Google account for registration.
 - Go to Account Settings and add your Lehigh email as your secondary email to convert to a Pro account.
Click on New Project in the left sidebar.

Choose from

- **Blank Project**: Start with an empty .tex file.
- **Example Project**: Start with an example article that Overleaf provides.
- **Upload Project**: Upload a zip file containing an existing LaTeX project i.e. at least one .tex file.
- **Import from Github**: Import an existing LaTeX project from your Github account.
Start with a Blank Document and add the following lines to it

\documentclass[10pt]{article}
\title{My First Document}
\author{Enter your name}
\date{\today}
\begin{document}
\maketitle
\tableofcontents
\section{My First Section}\label{section1}
Hello World!
\section{My Second Section}
In Sec. \ref{section1}, we said Hello to the World.
\end{document}

Watch the document compile on the right window. Click "Recompile" for compiling the document on demand.
LaTeX Basics

Syntax
Reserved Characters
Comments
Commands
Environments
Groups
Type Fonts
Type Size
LaTeX uses a markup language in order to describe document structure and presentation.

LaTeX converts your source text, combined with the markup, into a high quality document.

For the purpose of analogy, web pages work in a similar way: the HTML is used to describe the document, but it is your browser that presents it in its full glory - with different colors, fonts, sizes, etc.

"Whitespace" characters such as space or tab are treated uniformly as "space" by LaTeX.

Several consecutive whitespace characters are treated as one "space".

Several consecutive whitespace characters such as are treated as one space
- LaTeX has special characters or symbols that either have a special meaning or are bit available in all fonts.
- If you enter them directly in your text, they will normally not print.
- To print these symbols, you need to be escape with a `\` except `\` itself since `\` is reserved for line break.

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Command</th>
<th>Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>#</td>
<td>#</td>
<td>reference arguments</td>
</tr>
<tr>
<td>%</td>
<td>%</td>
<td>Comment</td>
</tr>
<tr>
<td>$</td>
<td>$</td>
<td>Math Mode</td>
</tr>
<tr>
<td>^</td>
<td>^</td>
<td>Superscript</td>
</tr>
<tr>
<td>_</td>
<td>_</td>
<td>Subscript</td>
</tr>
<tr>
<td>&</td>
<td>&</td>
<td>Alignment</td>
</tr>
<tr>
<td>{</td>
<td>{ }</td>
<td>wrap arguments</td>
</tr>
<tr>
<td>~</td>
<td>~</td>
<td>produce non-breakable space</td>
</tr>
<tr>
<td>\</td>
<td>textbackslash</td>
<td>escape character</td>
</tr>
<tr>
<td>\</td>
<td>\</td>
<td>line break</td>
</tr>
</tbody>
</table>
When LaTeX encounters a % character while processing an input file, it ignores the rest of the current line, the line break, and all whitespace at the beginning of the next line.

This can be used to write notes into the input file, which will not show up in the printed version.

![Example: Supercalifragilisticexpialidocious](image)

Note that the % character can be used to split long input lines that do not allow whitespace or line breaks, as with Supercalifragilisticexpialidocious above.

The core LaTeX language does not have a predefined syntax for commenting out regions spanning multiple lines.
LaTeX commands are case sensitive, and take one of the following two formats:

- They start with a backslash \ and then have a name consisting of letters only. Command names are terminated by a space, a number or any other "non-letter".
- They consist of a backslash \ and exactly one non-letter.

Some commands need an argument, which has to be given between curly braces { } after the command name.

Some commands support optional parameters, which are added after the command name in square brackets [].

The general syntax is: `\commandname[option1,option2,...]{argument1}{argument2}...`

Most standard LaTeX commands have a switch equivalent.

Switches have no arguments but apply on the rest of the scope, i.e. the current group or environment.

A switch should (almost) never be called outside of any scope, otherwise it will apply on the rest of the document.

```
{\bf This is in bold}\\
\em This is in italics
This is normal text
```

This is in bold
This is in italics
This is normal text
Environments in LaTeX have a role that is quite similar to commands, but they usually have effect on a wider part of the document.

Their syntax is:

\begin{environmentname}
text to be influenced
\end{environmentname}

Between the \begin and the \end you can put other commands and nested environments.

The internal mechanism of environments defines a group, which makes its usage safe (no influence on the other parts of the document).

In general, environments can accept arguments as well, but this feature is not commonly used and so it will be discussed in more advanced parts of the document.

Anything in LaTeX can be expressed in terms of commands and environments.
- A group is basically defined by a pair of braces.
- The range of commands put between braces is limited to them.

Example

\[
\textbf{This is in bold}
\]
\[
\textit{This is in italics}
\]
This is normal text

This is \textbf{in bold}
\textit{This is \textit{in italics}} This is normal text
- The actual letters and symbols (collectively called type) that LaTeX produces are characterized by their style and size.
- A type style is specified by family, series and shape.
- Default font type is roman family, medium series and upright shape.

<table>
<thead>
<tr>
<th>STYLE</th>
<th>COMMAND</th>
<th>ALTERNATE DECLARATION</th>
</tr>
</thead>
<tbody>
<tr>
<td>FAMILY</td>
<td></td>
<td></td>
</tr>
<tr>
<td>roman</td>
<td>\textsf{roman}</td>
<td>\textsf{rmfamily roman}</td>
</tr>
<tr>
<td>sans serif</td>
<td>\textsf{sans serif}</td>
<td>\textsf{sffamily sans serif}</td>
</tr>
<tr>
<td>typewriter</td>
<td>\textsf{typewriter}</td>
<td>\textsf{ttfamily typewriter}</td>
</tr>
<tr>
<td>SERIES</td>
<td></td>
<td></td>
</tr>
<tr>
<td>medium</td>
<td>\textsf{medium}</td>
<td>\textsf{mdseries medium}</td>
</tr>
<tr>
<td>boldface</td>
<td>\textsf{boldface}</td>
<td>\textsf{bfseries boldface}</td>
</tr>
<tr>
<td>SHAPE</td>
<td></td>
<td></td>
</tr>
<tr>
<td>upright</td>
<td>\textsf{upright}</td>
<td>\textsf{upshape upright}</td>
</tr>
<tr>
<td>italics</td>
<td>\textsf{italics}</td>
<td>\textsf{itshape italics}</td>
</tr>
<tr>
<td>slanted</td>
<td>\textsf{slanted}</td>
<td>\textsf{slshape slanted}</td>
</tr>
<tr>
<td>SMALL CAP</td>
<td>\textsf{small cap}</td>
<td>\textsf{scshape small caps}</td>
</tr>
</tbody>
</table>
- Type size is traditional measured in (printer) points.
- The default type produced by LaTeX documents is 10pt size.
- To change the type size, LaTeX has ten declarations available

<table>
<thead>
<tr>
<th>size</th>
<th>\tiny size</th>
</tr>
</thead>
<tbody>
<tr>
<td>\footnotesize size</td>
<td>\scriptsize size</td>
</tr>
<tr>
<td>\small size</td>
<td>\normalsize size</td>
</tr>
<tr>
<td>{large size}</td>
<td>{Large size}</td>
</tr>
<tr>
<td>{LARGE size}</td>
<td>{huge size}</td>
</tr>
<tr>
<td>{Huge size}</td>
<td></td>
</tr>
</tbody>
</table>
Document Structure

- Preamble
- Document Types
 - \texttt{documentclass} options
- Creating a Title Page
- Structuring a \LaTeX{} Document
- Section Numbering
- Appendix
- Cross Referencing
- Table of Contents
- Structuring a \LaTeX{} Document
- Adding Packages
When LaTeX processes an input file, it expects it to follow a certain structure.

Every LaTeX input file must contain the commands,

```
\documentclass{...}
\begin{document}
...
\end{document}
```

The area between `\documentclass{...}` and `\begin{document}` is called the **Preamble**.

The document content goes between the `\begin{document}` and `\end{document}` commands,

```
\begin{document}
...
\end{document}
```
The Preamble is anything that comes before the main document.

It is used for:

- Defining the type of document.
- Defining the top matter i.e. title, author, etc.
- Applying global formatting including changing page layout from the default.
- Including packages to add functionality.
The first uncommented line of the LaTeX document needs to describe the type of document that you are creating using
\documentclass[options]{documenttype}

LaTeX can be used to create documents of various types
1. article
2. report
3. book
4. letter
5. beamer\(^1\), powerdot\(^2\), prosper or seminar\(^3\) for Presentations

The difference between article, report and book is in the document structure and presentation:

- In article type, there is no chapter and the title page and document content can appear on the first page.
- In report and book, the title page is the first page and document content begins on the second page onwards.
- In article and report, there is an abstract environment to write the abstract of the article or report that you are writing.

\(^1\) For Tutorial, visit http://www.hpc.lsu.edu/training/archive/tutorial.php
\(^2\) THIS PRESENTATION, style file included in downloads
\(^3\) Not popular anymore, use beamer or powerdot
The options to \texttt{documentclass} are used to define a predetermined structure for the document.

The most commonly used options are defining:

- font size: 10pt (default), 11pt or 12pt
- paper size: letterpaper (default), legalpaper, executivelpaper, a4paper, a5paper or b5paper
- orientation: portrait (default) or landscape
- page format: onecolumn (default) or twocolumn

Options that depend on document type:

- Where to print page numbers for book, report and article
 \begin{itemize}
 \item \texttt{oneside} page numbers are printed the same on even and odd pages, default for article & report
 \item \texttt{twoside} page number appears on the right side for odd pages and on the left for even pages, default for book
 \end{itemize}

- Where new chapters begin in the book and report class
 \begin{itemize}
 \item \texttt{openright} chapters start on the right hand insert blank page if necessary i.e. odd numbered page
 \item \texttt{openany} chapters always start on the next page
 \end{itemize}

- Where the title appears
 \begin{itemize}
 \item In book and report classes, the title appears on the first page separate from the document content
 \item In article class, the title appears on the first page followed by the document content
 \item Use \texttt{titlepage} and \texttt{notitlepage} to override this standard behavior.
 \end{itemize}
• Other options commonly used
 - `leqno`: display equation numbers on the left rather than the default right
 - `fleqn`: displayed formulas are flushed left instead of default centered
 - `draft`: mark lines that are too wide with a thick black bar
 - `final`: default, do not mark lines that are too wide.

• Add some options to `documentclass` to create your second document.

\documentclass[12pt,twocolumn,fleqn]{article}
To create a title page LaTeX has three commands.

- \texttt{\textbackslash title \{Title\}} where Title is the title of your article, book or report.
- \texttt{\textbackslash author\{FirstName \textbackslash LastName\}}, if there are multiple authors, list them all delimited by a comma (,) or and.
- \texttt{\textbackslash date\{\today\}} to set the date when the article was created i.e. today
 If the date required is different from today, add the date that you need as in \texttt{\textbackslash date\{Feb. 29, 2016\}}

If you are publishing a journal article, please see their LaTeX templates and style files. Most of their style and class files define additional commands such as \texttt{\textbackslash affiliation\{\ldots\}}, \texttt{\textbackslash institution\{\ldots\}}, etc.

To create the actual page, you need to add \texttt{\textbackslash maketitle} in your document i.e. after the \texttt{\textbackslash begin\{document\}} command.

The \texttt{\textbackslash maketitle} is almost always the first line of your document content.

\begin{verbatim}
\documentclass[12pt,twocolumn,fleqn]{article}
\title{Simple \LaTeX{} Document}
\author{Alex Pacheco, Bhupender Thakur, Feng Chen and Le Yan}
\date{\today}
\begin{document}
\maketitle
\end{document}
\end{verbatim}
Document Content i.e. everything between the `\begin{document}` and `\end{document}` is partitioned into

<table>
<thead>
<tr>
<th>Section</th>
<th>Command</th>
<th>Level</th>
<th>Comment</th>
</tr>
</thead>
<tbody>
<tr>
<td>part</td>
<td><code>\part{title}</code></td>
<td>-1</td>
<td>not in letters</td>
</tr>
<tr>
<td>chapter</td>
<td><code>\chapter{title}</code></td>
<td>0</td>
<td>only in book and report</td>
</tr>
<tr>
<td>section</td>
<td><code>\section{title}</code></td>
<td>1</td>
<td>not in letters</td>
</tr>
<tr>
<td>subsection</td>
<td><code>\subsection{title}</code></td>
<td>2</td>
<td>not in letters</td>
</tr>
<tr>
<td>subsubsection</td>
<td><code>\subsubsection{title}</code></td>
<td>3</td>
<td>not in letters</td>
</tr>
<tr>
<td>paragraph</td>
<td><code>\paragraph{title (optional)}</code></td>
<td>4</td>
<td>not in letters</td>
</tr>
<tr>
<td>subparagraph</td>
<td><code>\subparagraph{title (optional)}</code></td>
<td>5</td>
<td>not in letters</td>
</tr>
</tbody>
</table>

 LaTeX provides 7 levels of depth for defining sections. The depth levels for the various commands are listed in column three in the above table.

The depth level of a section affects whether that section appears in the table of content or not. This can however be changed as we will see in the next few slides.

Since LaTeX is used very often for writing scientific articles and reports, there are environments defined to create Abstract, Appendices and Bibliographies.
- Numbering of the sections is performed automatically by LaTeX.
- Parts get roman numerals (Part I, Part II, etc.);
- chapters and sections get decimal numbering, and
- appendices (which are just a special case of chapters, and share the same structure) are lettered (A, B, C, etc.).
- You can change the depth to which section numbering occurs, so you can turn it off selectively. By default it is set to 2.
- To change the depth level, use the `\setcounter` command.
- For example, to change depth to only include chapters: `\setcounter{secnumdepth}{1}`
- You can change the numbering mechanism of the sectioning commands as well as lists, captions, equations, tables, figures etc. We’ll discuss more about this when we get to user defined commands.
As most research papers have an abstract, there are predefined commands for telling LaTeX which part of the content makes up the abstract.

- This should appear in its logical order, therefore, after the top matter, but before the main sections of the body.
- *This command is available for the document classes article and report, but not book.*
- In document class report, the abstract appears on a separate page without a page number.
- In document class article, the abstract comes after the title heading on the first page.

\begin{abstract}
In this article we discuss how to create simple LaTeX documents. Topics include structuring a document, list environment, inserting equations and figures, creating tables and more.
\end{abstract}

Abstract

In this article we discuss how to create simple LaTeX documents. Topics include structuring a document, list environment, inserting equations and figures, creating tables and more.
The following commands are available for producing automatic, sequential sectioning:
\part, \chapter, \section, \subsection, \subsubsection, \paragraph, \subparagraph

Except for \part, these commands form a sectioning hierarchy.

In document class report and book, the highest sectioning level is \chapter while in article class, it is \section.

The chapters are divided into sections using the \section command, which is further divided into subsections using the \subsection command and so on.

The syntax for these commands is \command[short title]{title} or \command*[title]

In the first form, the section is given the next number in the sequence which is then printed together with a heading using the text "title".

The text "short title" becomes the entry in the table of contents and page head. If "short title" is omitted, then the "title" is used.

In the second form (with *), no section number is printed and no entry is created in the table of contents.

The highest sectioning command is given a single number (1,2,\ldots), the second highest command then creates a double number (1.1, 2.3, \ldots) and so on.

The paragraph and subparagraph commands are not numbered.

For each sectioning command, there is an internal counter that is incremented by one every time that command is called and reset to zero on every call to a higher sectioning command.
The sectioning command, \texttt{part} is a special case and does not affect the numbering of other sectioning commands.

The \texttt{part} are usually numbered with Uppercase Roman Numerals as in Part I, Part IV, etc.

The \texttt{part} is used to divide your document into multiple parts which can be independent of each other.

\begin{verbatim}
\documentclass{article}

\title{Report of Projects I'm working on}
\author{Alex Pacheco}
\date{Oct 30, 2013}
\begin{document}
\maketitle
\part{First Project}
\section{Introduction}
Some stuff I'm doing
\section{Results}
Some useless results that I got
\section{Conclusion}
Unsuccessful Project ... keep working
\part{Second Project}
\section{Introduction}
Some stuff I'm doing
\section{Results}
More useless results
\section{Conclusion}
Unsuccessful Project ... keep working
\part{Third Project}
\section{Introduction}
Some stuff I'm doing
\section{Results}
Finally got some useful results
\section{Conclusion}
Successful Project ... boss says no, can't graduate ... keep working
\end{document}
\end{verbatim}
Report of Projects I’m working on
Alex Pacheco
Oct 30, 2013

Part I
First Project
1 Introduction
Some stuff I’m doing
2 Results
Some useless results that I got
3 Conclusion
Unsuccessful Project ... keep working

Part II
Second Project
4 Introduction
Some stuff I’m doing
5 Results
More useless results

Part III
Third Project
7 Introduction
Some stuff I’m doing
8 Results
Finally got some useful results
9 Conclusion
Successful Project ... boss says no, can’t graduate ... keep working
Report of Projects I’m working on
Alex Pacheco
Oct 30, 2013

Part I
First Project

Chapter 1
Project Title

1.1 Introduction
Some stuff I’m doing

1.2 Results
Some useless results that I got

1.3 Conclusion
Unsuccessful Project ... keep working

Part II
Second Project

Chapter 2
Project Title

2.1 Introduction
Some stuff I’m doing

2.2 Results
More useless results

2.3 Conclusion
Unsuccessful Project ... keep working

Part III
Third Project

Chapter 3
Project Title

3.1 Introduction
Some stuff I’m doing

3.2 Results
Finally got some useful results

3.3 Conclusion
Successful Project ... boss says no, can’t graduate ... keep working
An appendix is introduced with the declaration `\appendix`

- The `\appendix` resets the section counter in article and chapter counter in book and report.
- The numbering for the sectioning commands is also changed from numerals to capital letters, A, B,
- The word "Chapter" is replaced by "Appendix" so that subsequent chapter headings are preceded by "Appendix A", "Appendix B", etc.
- The numbering of lower sectioning commands contain the letter in place of chapter number, for e.g. A.2.1

```latex
\appendix
\section{My First Appendix}
...
\subsection{Subsection in My First Appendix}
...```
Since the various sectioning commands are numbered automatically, the chapter, section, etc numbers may not be known at the time of writing the document and may change as more content is added.

LaTeX has a cross-reference system, which allows you to label the various sectioning commands to refer to them at point in the document.

To label a command, use \texttt{\textbackslash label\{name\}} as in \texttt{\textbackslash chapter\{Introduction\}\label\{chap:intro\}} or \texttt{\textbackslash section\{My First document\}\label\{first\}}.

To reference the labeled section, use \texttt{\textbackslash ref\{name\}} as in

\begin{verbatim}
\chapter{Introduction}\label{chap:intro}
\section{My First document}\label{first}
In section \texttt{\ref{sec:chap:intro}} of Chapter \texttt{\ref{chap:intro}}, we wrote our first LaTeX document
\end{verbatim}

The cross-reference commands \texttt{\textbackslash label\{name\}} and \texttt{\textbackslash ref\{name\}} can also be used for other content such as tables, figures and equations.

To get the cross-referencing to show up correctly, you need to compile your document i.e. run \texttt{latex filename} or \texttt{pdflatex filename} two times.

The first time, the compiler stores the labels with the right number to be used for referencing.

The second time, it replaces \texttt{\ref\{name\}} with the right number.

The name that you use in the label command must be unique else the compiler will complain that there are multiply defined references.
● All auto-numbered headings get entered in the Table of Contents (ToC) automatically.
● Just add the command `tableofcontents` at the point where you want it printed (usually after the title page).
● Entries for the ToC are recorded each time you process your document, and reproduced the next time you process it, so you need to re-run LaTeX one extra time to ensure that all ToC pagignore references are correctly calculated.
● The commands `listoffigures` and `listoftables` work in exactly the same way as `tableofcontents` to automatically list all your tables and figures, usually created after the TOC.
● The `tableofcontents` commands normally shows only numbered section headings.
● To add extra entries, use the `addcontentsline` command

```
\subsection*{Preface}
\addcontentsline{toc}{subsection}{Preface}
```

● This will format an unnumbered ToC entry for "Preface" in the "subsection" style.
● To change the title of the TOC, you have to use this command
  `renewcommand{\contentsname}{New table of contents title}` in your document preamble.
● The default ToC will list headings of level 3 and above. Use the `setcounter` command to change this depth. For e.g. `\setcounter{tocdepth}{4}`.
\documentclass[12pt,fleqn]{article}
\title{Simple \LaTeX{} Document}
\author{Alex Pacheco}
\date{\today}
\begin{document}
\maketitle
\tableofcontents
\begin{abstract}
In this article we discuss how to create simple \LaTeX{} documents. Topics include structuring a document, list environment, inserting equations and figures, creating tables and more.
\end{abstract}
\section{Section 1}
\subsection{Section 1.1}
\subsection{Section 1.2}
\subsection*{Section nonumber}
\addcontentsline{toc}{subsection}{Section nonumber}
blah blah blah
\section{Section 2}
\subsection{Section 2.1}
\subsubsection{Section 2.1.1}
\subsubsection{Section 2.1.2}
\paragraph{Paragraph} no numbering for this paragraph
\subparagraph{Subparagraph} no numbering for this subparagraph
\subsection{Section 2.2}
blah blah blah
\appendix
\section{Appendix A}
\subsection{Appendix A.1}
blah blah blah
\section{Appendix B}
\subsection{Appendix B.1}
\subsubsection{Appendix B.1.1}
blah blah blah
\end{document}
Abstract

In this article we discuss how to create simple \LaTeX{} documents. Topics include structuring a document, list environment, inserting equations and figures, creating tables and more.
In LaTeX, the document type determines its overall general properties, such as layout and sectioning.

However, it is possible to change the way certain commands work by invoking specific packages which may define new commands to add features that are not part of standard LaTeX.

A LaTeX package is nothing more than a set of LaTeX or TeX commands stored in a file with an extension .sty.

To use a package, add `\usepackage[options]{packagename}` in the preamble of the document. The `[options]` is optional and some packages do not provide options at all.

There are hundreds of useful packages and listing them all is beyond the scope of this tutorial.

Some of the most commonly used packages are:

- `amsmath` contains the advanced math extensions for LaTeX.
- `graphicx` manage external pictures.
- `color` adds support for colored text.
- `geometry` easy management of document margins and the document page size.
- `inputenc` choose the encoding of the input text.
- `babel` provides the internationalization of LaTeX. It has to be loaded in any document, and you have to give as an option the main language you are going to use in the document. e.g. `\usepackage[english]{babel}`
- `hyperref` It gives LaTeX the possibility to manage links within the document or to any URL when you compile in PDF.
- `cite` assists in citation management.
- `natbib` gives additional citation options and styles.
**Typesetting**
- Foreign Letters & Accents
- Mathematics
- Math Symbols
- Power and Indices
- Fractions and Binomials
- Sums, Products, Integrals and Roots
- Matrices
- Theorems, Lemmas and Corollaries
- Proofs
- Lists
- Tables
- Table Environment and Captions
- Inserting Figures
- Floating Tables and Figures
Special letters that exist in European languages can be generated with TeX.

\[
\begin{array}{cccccccc}
\{\text{\oe}\} & \oe & \{\text{\o}\} & \o & \{\text{\ae}\} & \ae & \{\text{l}\} & \l \\
\{\text{\OE}\} & \OE & \{\text{\O}\} & \O & \{\text{\AE}\} & \AE & \{\text{\L}\} & \L \\
\{\text{\aa}\} & \aa & \{\text{\ss}\} & \ss & \{\text{\AA}\} & \AA & \{\text{\SS}\} & \SS
\end{array}
\]

In non-English languages, there is a multiplicity of diacritic marks or accents, most of which can be printed with TeX.

The examples below are shown for the letter “o” but can be used with any letter.

\[
\begin{array}{cccccccc}
\{\text{\acute{o}}\} & \acute{o} & \{\text{\grave{o}}\} & \grave{o} & \{\text{\breve{o}}\} & \breve{o} & \{\text{\ddot{o}}\} & \ddot{o} \\
\{\text{\grave{i}}\} & \grave{i} & \{\text{\ddot{i}}\} & \ddot{i} & \{\text{\breve{i}}\} & \breve{i} & \{\text{\grave{j}}\} & \grave{j} \\
\{\text{\grave{u}}\} & \grave{u} & \{\text{\ddot{u}}\} & \ddot{u} & \{\text{\breve{u}}\} & \breve{u} & \{\text{\grave{r}}\} & \grave{r}
\end{array}
\]

When using these accents with the letters i and j, the dot must be removed using the commands \text{i} and \text{j} respectively to yield ı and ĵ.

\text{u}\{\text{i}\} and \text{H}\{\text{j}\} now yield ı and ĵ instead of ı and ĵ.
One of the greatest motivating forces for Donald Knuth when he began developing the original TeX system was to create something that allowed simple construction of mathematical formulas, while looking professional when printed.

Typesetting mathematics is one of LaTeX’s greatest strengths.

If your document requires only a few simple mathematical formulas, plain LaTeX has most of the tools that you will need.

If you are writing a scientific document that contains numerous complicated formulas, the amsmath package introduces several new commands that are more powerful and flexible than the ones provided by LaTeX.

The mathtools package fixes some amsmath quirks and adds some useful settings, symbols, and environments to amsmath.

To use either package, include \usepackage{amsmath} or \usepackage{mathtools} in the preamble of the document.

The mathtools package loads the amsmath package and hence there is no need to add \usepackage{amsmath} in the preamble if mathtools is used.
LaTeX needs to know beforehand that the subsequent text does indeed contain mathematical elements.

This is because LaTeX typesets maths notation differently from normal text. Therefore, special environments have been declared for this purpose.

They can be distinguished into two categories depending on how they are presented:

- **text** text formulas are displayed inline, that is, within the body of text where it is declared, for example, I can say that $a + a = 2a$ within this sentence.

- **displayed** displayed formulas are separate from the main text.

As maths require special environments, there are naturally the appropriate environment names you can use in the standard way.

Unlike most other environments, however, there are some handy shorthands to declaring your formulas.

<table>
<thead>
<tr>
<th>Type</th>
<th>Inline</th>
<th>Displayed</th>
<th>Displayed &amp; automatically numbered</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td>math</td>
<td>displaymath</td>
<td>equation</td>
</tr>
<tr>
<td>Requires</td>
<td></td>
<td></td>
<td>amsmath</td>
</tr>
<tr>
<td>LaTeX shorthand</td>
<td>( \ldots ) )</td>
<td>[ \ldots ]</td>
<td>starred version suppresses numbering</td>
</tr>
<tr>
<td>TeX shorthand</td>
<td>$ \ldots $</td>
<td>$$ \ldots $$</td>
<td></td>
</tr>
<tr>
<td>Comment</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Using the $$\ldots$$ should be avoided, as it may cause problems, particularly with the AMS-LaTeX macros.
Mathematics has many symbols!

One of the most difficult aspects of learning \LaTeX{} is remembering how to produce symbols.

The following set of symbols can be accessed directly from the keyboard:
\[ + - = ! / ( ) [ ] < > | ' : \]

Beyond those listed above, distinct commands must be issued in order to display the desired symbols.

There are a great deal of examples such as Greek letters, set and relations symbols, arrows, binary operators, etc.

\[ \forall x \in X, \quad \exists y \leq \epsilon \]

Fortunately, there’s a tool that can greatly simplify the search for the command for a specific symbol.

- Detexify: applet for looking up \LaTeX{} symbols by drawing them
  [http://detexify.kirelabs.org/classify.html](http://detexify.kirelabs.org/classify.html)

- The Comprehensive \LaTeX{} Symbol List
  [http://www.ctan.org/tex-archive/info/symbols/comprehensive](http://www.ctan.org/tex-archive/info/symbols/comprehensive)
Mathematical formulas often contain exponents (power) and indices, characters that are either raised or lowered relative to the main line of the formula.

Superscripts and subscripts are typographically the same things as exponents and indices respectively.

The character command caret (^) sets the next character as an exponent (superscript).

The character command underscore (_) set the next character as an index (subscript).

If the exponent or index contains more than one character, the group of characters must be enclosed in braces { }.

\begin{math}x^2, a_n, x^{10}, b_{i,j}, x^n_i\end{math}

\begin{displaymath}x^2, a_n, x^{10}, b_{i,j}, x^n_i\end{displaymath}

When exponents and indices occur together, their order is unimportant i.e. $x^n_i$ and $x_i^n$ will produce the same result as above.

Multiple raisings and lowerings are generated by applying ^ and _ to the exponents and indices.

\begin{displaymath}x^{y^2}, x^{y_1}, A^{x_i^2}_{j^n_{m}}\end{displaymath}
The raising and lowering commands `^` and `_` are only permitted in math mode.

By convention, all text in math mode is in italics or slanted text.

If you need to write normal text with superscripts or subscripts, you need to use special commands to typeset the fonts correctly.

The HPC Training on LaTeX will be held on Oct. 30\textsuperscript{th}, 2013.

A better way to write this is to set the superscript th in roman font using Oct. 30\textsuperscript{\text{\texttt{\textnormal{th}}}}.

Other available font typesets in math modes are:

\begin{verbatim}
\texttt{\textnormal{Roman}} & \texttt{\textsf{sanserif}} \\
\texttt{\textnormal{normal}} & \texttt{\texttt{typewriter}} \\
\texttt{\textit{italic}} & \texttt{\textbf{boldface}} \\
\texttt{\textcal{CAL}} & \\
\end{verbatim}
A fraction is created using the \( \frac{\text{numerator}}{\text{denominator}} \) command.

The binomial function can be written using the \( \binom \) command.

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

Another way to write fractions is using the \( \over \) command while binomials can also be written with the \( \choose \) command,

\[
\binom{n}{k} = \frac{n!}{k!(n-k)!}
\]

For relatively simple fractions, it may be more aesthetically pleasing to use powers and indices,

\[
\frac{3}{7}
\]

You can embed fractions within fractions,
Inline fractions can be typeset using the \texttt{displaystyle \{math command\} or \texttt{dfrac\{numerator\}\{denominator\}} command.

Similarly, inline binomials can be typeset using the \texttt{dbinom\{numerator\}\{denominator\}} command.

For example:

\[
\frac{n!}{k!(n-k)!} = \binom{n}{k}
\]
looks crummy but

\[
\frac{n!}{k!(n-k)!} = \dbinom{n}{k}
\]
or

\[
\text{displaystyle}\frac{n!}{k!(n-k)!} = \binom{n}{k}
\]
looks pleasing.

For example:

\[
\frac{n!}{k!(n-k)!} = \binom{n}{k}
\]
looks crummy but

\[
\frac{n!}{k!(n-k)!} = \binom{n}{k}
\]
looks pleasing.

Alternatively you can also use \texttt{tfrac}, \texttt{tbinom} or \texttt{textstyle \{math command\}} commands.

Continued fractions should be written using \texttt{cfrac} command,

\[
x = a_0 + \frac{1}{a_1 + \frac{1}{a_2 + \frac{1}{a_3 + \frac{1}{a_4}}}}
\]
Sums, Products, Integrals and Roots

- Summation, Product and Integral signs are made with the commands \texttt{\sum}, \texttt{\prod} and \texttt{\int} respectively.

- Sums, products and integrals very often occur with upper and lower limits.

- These are printed using the power and index commands \texttt{^} and \texttt{_} respectively.

\[
2 \sum_{i=1}^{n} \int_{a}^{b} f_i(x) g_i(x) \, dx \quad P_{m-n} = \prod_{i=0}^{m-1} (n-i)
\]

- Roots are printed using the command \texttt{\sqrt[n]{arg}} where \(n\) is the order. Default is \(n = 2\) which can be omitted.

\[
\sqrt[3]{8} = 2 \quad \sqrt{4} = 2
\]

- Roots can be nested,

\[
\sqrt[3]{-q + \sqrt{q^2 + p^3}}
\]
Greek letters are commonly used in mathematics, and they are very easy to type in math mode.

<table>
<thead>
<tr>
<th>Lower Case</th>
<th>Upper Case</th>
<th>Alternate</th>
</tr>
</thead>
<tbody>
<tr>
<td>\alpha \quad \alpha</td>
<td>\Gamma \quad \Gamma</td>
<td>\varepsilon \quad \varepsilon</td>
</tr>
<tr>
<td>\beta \quad \beta</td>
<td>\Delta \quad \Delta</td>
<td></td>
</tr>
<tr>
<td>\gamma \quad \gamma</td>
<td>\Theta \quad \Theta</td>
<td></td>
</tr>
<tr>
<td>\delta \quad \delta</td>
<td>\vartheta \quad \vartheta</td>
<td></td>
</tr>
<tr>
<td>\epsilon \quad \epsilon</td>
<td>\varepsilon \quad \varepsilon</td>
<td></td>
</tr>
<tr>
<td>\zeta \quad \zeta</td>
<td>\vartheta \quad \vartheta</td>
<td></td>
</tr>
<tr>
<td>\eta \quad \eta</td>
<td>\varepsilon \quad \varepsilon</td>
<td></td>
</tr>
<tr>
<td>\theta \quad \theta</td>
<td>\vartheta \quad \vartheta</td>
<td></td>
</tr>
<tr>
<td>\iota \quad \iota</td>
<td>\varepsilon \quad \varepsilon</td>
<td></td>
</tr>
<tr>
<td>\kappa \quad \kappa</td>
<td>\varepsilon \quad \varepsilon</td>
<td></td>
</tr>
<tr>
<td>\lambda \quad \lambda</td>
<td>\Lambda \quad \Lambda</td>
<td></td>
</tr>
<tr>
<td>\mu \quad \mu</td>
<td>\varpi \quad \varpi</td>
<td></td>
</tr>
<tr>
<td>\nu \quad \nu</td>
<td>\varpi \quad \varpi</td>
<td></td>
</tr>
<tr>
<td>\xi \quad \xi</td>
<td>\Xi \quad \Xi</td>
<td></td>
</tr>
<tr>
<td>\pi \quad \pi</td>
<td>\Pi \quad \Pi</td>
<td>\varpi \quad \varpi</td>
</tr>
<tr>
<td>\rho \quad \rho</td>
<td>\varrho \quad \varrho</td>
<td></td>
</tr>
<tr>
<td>\sigma \quad \sigma</td>
<td>\Sigma \quad \Sigma</td>
<td>\varsigma \quad \varsigma</td>
</tr>
<tr>
<td>\tau \quad \tau</td>
<td>\Upsilon \quad \Upsilon</td>
<td></td>
</tr>
<tr>
<td>\upsilon \quad \upsilon</td>
<td>\Upsilon \quad \Upsilon</td>
<td></td>
</tr>
<tr>
<td>\phi \quad \phi</td>
<td>\Phi \quad \Phi</td>
<td>\varphi \quad \varphi</td>
</tr>
<tr>
<td>\chi \quad \chi</td>
<td>\Psi \quad \Psi</td>
<td></td>
</tr>
<tr>
<td>\psi \quad \psi</td>
<td>\Psi \quad \Psi</td>
<td></td>
</tr>
<tr>
<td>\omega \quad \omega</td>
<td>\Omega \quad \Omega</td>
<td></td>
</tr>
</tbody>
</table>
### Special Symbols

\[
\dag & \$ \$ & \copyright & \$ \ddag & \$ \P & \$ \pounds
\]

### Miscellaneous Symbols

\[
\partial & \mathbb{I} & \Re & \nabla & \aleph \\
\eth & \mathbb{J} & \Im & \Box & \beth \\
\hbar & \mathbb{K} & \wp & \infty & \gimel \\
\angle & \mathbb{L} & \forall & \exists & \nexists \\
\measuredangle & \sphericalangle & \emptyset & \eth & \mho
\]

### Binary Operation Symbols

\[
\pm & \mp & \times & \cdot & \oplus & \ominus \\
\otimes & \odot & \ast & \star & \dagger & \ddagger
\]

### Function Names

| \sin | \arcsin | \sinh | \sec |
| \cos | \arccos | \cosh | \csc |
| \tan | \arctan | \tanh |
| \cot | \coth |
| \arg | \deg | \det | \inf |
| \exp | \ln | \log | \lim |
| \max | \min |
### Delimiters

| $|$ | $\backslash$ | $\lfloor$ | $\rfloor$ | $\lceil$ | $\rceil$ | $\{ \}$ | $\{ \}$ | ( ) | $\langle \rangle$ |
|----|----|----|----|----|----|----|----|----|----|

### Arrows

<table>
<thead>
<tr>
<th>$\leftarrow$</th>
<th>$\Leftarrow$</th>
<th>$\rightarrow$</th>
<th>$\Rightarrow$</th>
<th>$\downarrow$</th>
<th>$\Uparrow$</th>
<th>$\uparrow$</th>
<th>$\Downarrow$</th>
<th>$\updownarrow$</th>
<th>$\Leftrightarrow$</th>
</tr>
</thead>
</table>

### Mathematical Symbols

<table>
<thead>
<tr>
<th>$\sum$</th>
<th>$\prod$</th>
<th>$\coprod$</th>
<th>$\int$</th>
<th>$\oint$</th>
<th>$\ldots$</th>
<th>$\cdots$</th>
<th>$\vdots$</th>
<th>$\ddots$</th>
</tr>
</thead>
</table>

### Relational Symbols

| $<$ & $>$ | $\not<$ & $\not>$ | $\le$ & $\ge$ | $\not\le$ & $\not\ge$ | $\ll$ & $\gg$ | $\lll$ & $\ggg$ | $\subset$ & $\supset$ | $\not\subset$ & $\not\supset$ | $\subseteq$ & $\supseteq$ | $\not\subseteq$ & $\not\supseteq$ | $\in$ & $\ni$ | $\not\in$ & $\not\ni$ | $\neq$ & $\sim$ | $\not\sim$ | $\approx$ & $\cong$ | $\not\approx$ & $\not\cong$ | $\equiv$ & $\asymp$ | $\not\equiv$ & $\not\asymp$ | $\propto$ & $\simeq$ | $\not\propto$ & $\not\simeq$ | $\parallel$ & $\mid$ | $\nparallel$ & $\nmid$ |
Math Accents

<table>
<thead>
<tr>
<th>Command</th>
<th>Symbol</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\hat{a}$</td>
<td>(\hat{a})</td>
</tr>
<tr>
<td>$\check{a}$</td>
<td>(\check{a})</td>
</tr>
<tr>
<td>$\dot{a}$</td>
<td>(\dot{a})</td>
</tr>
<tr>
<td>$\breve{a}$</td>
<td>(\breve{a})</td>
</tr>
<tr>
<td>$\acute{a}$</td>
<td>(\acute{a})</td>
</tr>
<tr>
<td>$\ddot{a}$</td>
<td>(\ddot{a})</td>
</tr>
<tr>
<td>$\grave{a}$</td>
<td>(\grave{a})</td>
</tr>
<tr>
<td>$\tilde{a}$</td>
<td>(\tilde{a})</td>
</tr>
<tr>
<td>$\mathring{a}$</td>
<td>(\mathring{a})</td>
</tr>
<tr>
<td>$\bar{a}$</td>
<td>(\bar{a})</td>
</tr>
<tr>
<td>$\vec{a}$</td>
<td>(\vec{a})</td>
</tr>
</tbody>
</table>

Math Alphabet Commands

<table>
<thead>
<tr>
<th>Command</th>
<th>Font Style</th>
</tr>
</thead>
<tbody>
<tr>
<td>$\text{\textnormal{Roman}}$</td>
<td>Roman</td>
</tr>
<tr>
<td>$\text{\textsc{sanserif}}$</td>
<td>sanserif</td>
</tr>
<tr>
<td>$\text{\textit{italic}}$</td>
<td>italic</td>
</tr>
<tr>
<td>$\text{\textbf{boldface}}$</td>
<td>boldface</td>
</tr>
<tr>
<td>$\text{\texttt{typewriter}}$</td>
<td>typewriter</td>
</tr>
</tbody>
</table>

Note that in math mode as in the normal text i.e. anything other than numbers or commands is slanted or italics, and there are no spaces in the text. Thats the reason for the mathxx commands allows you to write text which is in non-math mode i.e. upright in the same font as your document.

If you need your text in math mode to be slanted and you do not use the mathit command, you can use the commands \(\backslash, \backslash\text{quad} \backslash\text{qquad}\) to add space wherever you need to in your text.
There are several environments available to write equations.

1. **equation**
2. **eqnarray**
3. **align**
4. **gather**

The equation environment can be used to enter one equation at a time.

The equations are automatically numbered in sequence. If you do not want equations to be numbered, use the starred version of the environment for e.g. `equation*`

You can also add `\nonumber` at the end of the equation to skip the numbering.

\begin{equation}
\imath \hbar \frac{\partial}{\partial t} \Psi = \mathcal{H} \Psi
\end{equation}

\begin{equation*}
\mathcal{H} \Psi = E \Psi
\end{equation*}

\begin{equation}
\Psi = \sum_{i}^{n} c_{i} \psi_{i} \nonumber
\end{equation}
To enter multi-line equations, use the eqnarray, align or gather environment.

The individual lines of the equation are separated by `\\`.

In eqnarray each line has the form

```
left formula & mid formula & right formula
```

where mid formula is centered and is single math character such as an assignment operators, =, >, etc.,

the left formula is left justified and

the right formula is right justified.

align is similar to eqnarray with the form `left formula & right formula` with the whole equation centered by default.

eqnarray and align require the alignment marker `&` to align the equations while gather center aligns all equations.

By default, all equations are centered. To left justify all equations add fleqn option to documentclass.

\begin{eqnarray}
\imath\hbar\frac{\partial}{\partial t}|\Psi\rangle &=& \hat{\mathcal{H}}|\Psi\rangle \\
|\Psi_i\rangle &=& \sum_p |\psi_p\rangle c_{pi}
\end{eqnarray}
The starred version of these environments i.e. eqnarray*, align* and gather* suppress printing of equation numbers.

You can use the \texttt{\setcounter{counter}{value}} to set the equation number to value where \texttt{counter=equation}.

You can also use the \texttt{\addtocounter{counter}{value}} to increment the equation by the value.

\begin{align}
\hat{\rho} &= \sum |\Psi\rangle\langle\Psi| \\
\hbar \frac{\partial}{\partial t}\hat{\rho} &= [\hat{H}, \hat{\rho}] 
\end{align} (8)

\begin{align}
\hat{\rho} &= \sum_{pq} |\psi_p\rangle c_p c_{iq}^\ast \langle\psi_q| \\
&= \sum_{pq} |\psi_p\rangle \Gamma_{pq}^{ij} \langle\psi_q| 
\end{align} (3)
LaTeX has a multiline environment for writing long equations that need to split across multiple lines.

The multiline environment switches to math mode at the start and back to text mode at the end.

The line break occurs when `\` is encountered.

By default, the first line is left justified, the last line is right justified while all others are centered.

You can use the commands `\shoveleft{ formula }` and `\shoveright{ formula }` to shift the lines to the left and right respectively.

\[
\begin{multline}
|\Psi_{II}(t+\delta t)\rangle = \exp\left[-\frac{i}{\hbar} H_{II} \delta t\right] \times \left[ |\Psi_{II}(t)\rangle + \frac{\delta t}{2\hbar} V_{I-II} |\Psi_I(t)\rangle \right]
\end{multline}
\]

\[|\Psi_{II}(t + \delta t)\rangle = \exp\left[ -\frac{i}{\hbar} H_{II} \delta t \right] \times \left[ |\Psi_{II}(t)\rangle + \frac{\delta t}{2\hbar} V_{I-II} |\Psi_I(t)\rangle \right] + \frac{\delta t}{2\hbar} V_{I-II} |\Psi_I(t + \delta t)\rangle \] (5)
Like multline, the split environment is meant for single equations that does not fit on a single line.

- Line breaks are forced with the `\` command.

- In the split environment, the alignment marker `&` is required to align the multi line equation.

- The split environment doesn’t switch to math mode and needs to be used within an equation environment.

\begin{equation}
\begin{split}
H_c &= \frac{1}{2n} \sum_{l=0}^{n} (-1)^l (k-1)^{p-2} \sum_{l_1+\ldots+l_p=l} \prod_{i=1}^{p} \binom{n_i}{l_i} \\
&\quad \times [(k-l) - (k_i - l_i)]^{k_i-l_i} \times \left[ (k-l)^2 - \sum_{j=1}^{p} (k_i - l_i)^2 \right]
\end{split}
\end{equation}
To number subordinate equations in a numbered equation environment, place the part of document containing them in a subequations environment:

\begin{subequations}
Maxwell’s equations:
\begin{align}
B' &= -\nabla \times E, \\
E' &= \nabla \times B - 4\pi j,
\end{align}
\end{subequations}

Maxwell’s equations:

\begin{align*}
B' &= -\nabla \times E, \\
E' &= \nabla \times B - 4\pi j,
\end{align*}

(7a)  
(7b)
A basic matrix (or determinant) can be created using the matrix or array environment.

Entries specified by row, with columns separated using an ampersand (&) and a new rows separated with a double backslash (\).

By default, all columns are center aligned in matrix environment but need to be specified in the array environment.

\[
\begin{equation*}
\begin{matrix}
a & b & c \\
d & e & f \\
ghi & jkl & mno
\end{matrix}
= \\
\left(
\begin{array}{lcr}
a & b & c \\
d & e & f \\
ghi & jkl & mno
\end{array}
\right)
\end{equation*}
\]

The matrix and array environments do not contain any delimiters.

In general, matrices are enclosed in different delimiters such as ( ), { }, [ ], | |, || ||.

You can add these delimiters explicitly as above or
use the predefined LaTeX environments.

<table>
<thead>
<tr>
<th>Environment name</th>
<th>Surrounding delimiter</th>
</tr>
</thead>
<tbody>
<tr>
<td>matrix</td>
<td>( )</td>
</tr>
<tr>
<td>pmatrix</td>
<td>[ ]</td>
</tr>
<tr>
<td>bmatrix</td>
<td>{ }</td>
</tr>
<tr>
<td>Bmatrix</td>
<td>[ ]</td>
</tr>
<tr>
<td>vmatrix</td>
<td></td>
</tr>
<tr>
<td>Vmatrix</td>
<td>|</td>
</tr>
</tbody>
</table>

If you need to align the columns differently i.e. either left or right aligned, use the starred version of these environment with column alignment as option to the environment command.

\begin{equation*}
\begin{Bmatrix}*[r]
\begin{bmatrix}
a & b & c \\
ghi & jkl & mno
\end{bmatrix}
\end{Bmatrix}*
\end{equation*}

\begin{equation*}
\begin{vmatrix}*[l]
\begin{vmatrix}
a & b & c \\
ghi & jkl & mno
\end{vmatrix}
\end{vmatrix}*
\end{equation*}
amsmath has a case environment to write piecewise functions,

\[
\begin{aligned}
  u(x) &= \begin{cases}
    \exp(x) & \text{if } x \geq 0 \\
    1 & \text{if } x < 0
  \end{cases} \\
\end{aligned}
\]

If the purpose is to make comments on particular parts of an equation, use the \texttt{overbrace} and \texttt{underbrace} commands,

\[
 z = \overbrace{\underbrace{x}_\text{real} + \underbrace{iy}_\text{imaginary}}^{\text{complex number}}
\]

The \texttt{xleftarrow} and \texttt{xrightarrow} commands produce arrows which extend to the length of the text. The optional argument \[ \] contains the subscript while \{ \} contains the superscript which can be empty.

\[
A \xleftarrow{\text{this way}} B \xrightarrow{\text{or that way}} C
\]
Very often mathematical features will differ in size, in which case the delimiters surrounding the expression should vary accordingly. This can be done automatically using the \texttt{\textbackslash left}, \texttt{\textbackslash right}, and \texttt{\textbackslash middle} commands.

\[
\left(\frac{x^2}{y^3}\right)
\]

\[
P \left( A = 2 \middle| \frac{A^2}{B} > 4 \right)
\]

If a delimiter on only one side of an expression is required, then an invisible delimiter on the other side may be denoted using a period (\).

\[
\left. \frac{x^3}{3}\right|_0^1
\]
Mathematical documents include elements that require special formatting and numbering such as theorems, definitions, propositions, remarks, corollaries, lemmas and so on.

- Make sure you have the amsthm package enabled: `\usepackage{amsthm}`
- In the preamble, add `\newtheorem{name}{Printed output}`
- The first argument is the name of the environment that is defined, the second argument is the word that will be printed, in boldface font, at the beginning of the environment.
- For example: add `\newtheorem{theorem}{theorem}` to preamble and the following within the document.

```latex
\begin{theorem}
Let f be a function whose derivative exists in every point, then f is a continuous function.
\end{theorem}
```

**Theorem 1.** Let $f$ be a function whose derivative exists in every point, then $f$ is a continuous function.
You can add a name within brackets in the environment opening command

```latex
\begin{theorem}[Pythagorean theorem]
\label{pythagorean}
This is a theorem about right triangles summarised by equation
\[x^2 + y^2 = z^2 \]
\end{theorem}
```

**Theorem 2 (Pythagorean theorem).** *This is a theorem about right triangles summarised by equation* $x^2 + y^2 = z^2$

- The \texttt{newtheorem} command accepts different options to change the numbering style
- \texttt{newtheorem\{theorem\}\{Theorem\}\{section\}}: restart the theorem counter for each section.
- \texttt{newtheorem\{lemma\}\{theorem\}\{Lemma\}}: Create a new environment lemma that uses the same counter as theorem.
- \texttt{newtheorem\{corollary\}\{Corollary\}\{theorem\}}: Create a new environment corollary such that the counter is reset every time a new theorem environment is used.
- \texttt{newtheorem\{remark\}\{remark\}}: Create an unnumbered environment for remarks and comments.
\begin{corollary}
There's no right rectangle whose sides measure 3cm, 4cm, and 6cm.
\end{corollary}

\begin{lemma}
Given two line segments whose lengths are $a$ and $b$ respectively there is a real number $r$ such that $b=ra$.
\end{lemma}

\begin{corollary}
There’s no right rectangle whose sides measure 3cm, 4cm, and 6cm.
\end{corollary}

\begin{remark}
This statement is true, I guess.
\end{remark}

**Corollary 2.1.** There’s no right rectangle whose sides measure 3cm, 4cm, and 6cm.

**Lemma 3.** Given two line segments whose lengths are $a$ and $b$ respectively there is a real number $r$ such that $b = ra$.

**Corollary 3.1.** There’s no right rectangle whose sides measure 3cm, 4cm, and 6cm.

**Remark.** This statement is true, I guess.
Proofs are the core of mathematical papers and books and is customary to keep them visually apart from the normal text in the document.

Lemma 4. Given two line segments whose lengths are $a$ and $b$ respectively there is a real number $r$ such that $b = ra$.

Proof. To prove it by contradiction try and assume that the statement is false, proceed from there and at some point you will arrive to a contradiction.

The word Proof is italicized and there is some extra spacing.

A special symbol is used to mark the end of the proof.

To change the symbol to say a blacksquare, add the following to the preamble

\renewcommand{\qedsymbol}{$\blacksquare$}
LaTeX has several environments to create bulleted or numbered lists. 

- itemize environment, creates a bulleted list.
- enumerate environment, creates a numbered list.
- description environment, creates a list with text instead of bullets and numbers.

```latex
\begin{itemize}
 \item first level is a filled circle
 \begin{itemize}
 \item second level is a hyphen
 \begin{itemize}
 \item third level is an asterix
 \begin{itemize}
 \item fourth level is a period
 \end{itemize}
 \end{itemize}
 \end{itemize}
\end{itemize}

\begin{enumerate}
 \item first level arabic numeral
 \begin{enumerate}
 \item second level is a letter in parenthesis
 \begin{enumerate}
 \item third level is a lowercase roman numeral
 \begin{enumerate}
 \item fourth level is an uppercase letter
 \end{enumerate}
 \end{itemize}
 \end{enumerate}
\end{enumerate}

\begin{description}
 \item [Header 1] Item 1
 \item [Header 2] Item 2
\end{description}
```
Lists in LaTeX

1 itemize environment

\begin{itemize}
\item item 1
\item item 2
\begin{itemize}
\item subitem 1 of item 2
\begin{itemize}
\item subsubitem 1 of subitem 1
\begin{itemize}
\item subsubsubitem 1 of subsubitem 1
\end{itemize}
\end{itemize}
\end{itemize}
\item \item 1
\item \item 2
\item \item \item (a) subitem 1 of item 2
\item \item \item \item (A) subsubitem 1 of subitem 1
\item \item \item \item \item \item ...
\end{itemize}

2 enumerate environment

\begin{enumerate}
\item item 1
\item item 2
\begin{enumerate}
\item subitem 1 of item 2
\begin{enumerate}
\item subsubitem 1 of subitem 1
\end{enumerate}
\end{enumerate}
\end{enumerate}

3 description environment

\begin{description}
\item[Description]: The description environment is slightly different.
\item[Item label]: You can specify the item label by passing it as an optional argument
\item[Use]: Ideal for a series of definitions, such as a glossary.
\end{description}
- Tables are created within the tabular environment.
- The arguments to the tabular environment is the positional alignment of all columns in the table.
- Every column entry needs to be separated by the alignment character &, a blank entry will be bounded by & except if it the last column entry.
- Each row needs to have \ at the end signifying the end of row.
- To create a horizontal line between rows, use \hline. Note that \hline is not followed by \.
- To create a horizontal line between columns $m$ and $n$, use \cline{$m-n$}.
- To add border to each column add | to the position arguments of the tabular environment.
- The tabular environment is in text mode. To add column entries in math mode, your column entries should be within \$. . . \$.

Recall all the math symbols in previous slides, they were created within a tabular environment.

\begin{tabular}{|l|c|r|}
\hline
R1C1 & R1C2 & R1C3 \\
\hline
R2C1 & R2C2 \\
\cline{2-3}
R3C1 & R3C3 \\
\hline
\end{tabular}
Creating fancy tables with one column spanning multiple columns is possible with LaTeX. use the command \texttt{\textbackslash multicolumn\{num\}\{col\}\{text\}} where

\begin{itemize}
\item num columns are merged into one,
\item col is the alignment of the column, either l, c, or r for left, center and right, and
\item text is the column entry.
\end{itemize}

If you need one row to span multiple rows, you need to include \texttt{\textbackslash usepackage\{multirow\}} in the preamble and use the command \texttt{\textbackslash multirow\{num\}\{row\}\{text\}} where

\begin{itemize}
\item num and text have the same meaning as in multicolumn, and
\item row is location of the text, by default centered using \texttt{*}.
\item You can use the \texttt{\textbackslash raisebox\{\texttt{lift}\}\{text\}} command to reposition the text in both the multicolumn and multirow environments.
\end{itemize}

To write long tables in landscape mode use the \texttt{lscape} package,

\begin{verbatim}
\texttt{\textbackslash usepackage\{lscape\}} \% this goes in the preamble
\texttt{\textbackslash begin\{landscape\}} \% to print a table in landscape mode
\texttt{\textbackslash begin\{table\}} \ldots \texttt{\textbackslash end\{table\}}
\texttt{\textbackslash end\{landscape\}}
\end{verbatim}
\begin{center}
\begin{tabular}{ | l | l | l | }
\hline
\multicolumn{3}{ | c | }{Team sheet} \\
\hline
Goalkeeper & GK & Paul Robinson \\
\hline
\multirow{4}{*}{Defenders} & LB & Lucus Radebe \\
& DC & Michael Duberry \\
& DC & Dominic Matteo \\
& RB & Didier Domi \\
\hline
\multirow{3}{*}{Midfielders} & MC & David Batty \\
& MC & Eirik Bakke \\
& MC & Jody Morris \\
\hline
Forward & FW & Jamie McMaster \\
\hline
\multirow{2}{*}{Strikers} & ST & Alan Smith \\
& ST & Mark Viduka \\
\end{tabular}
\end{center}
The tabular environment does not create a caption.

If you need captions, the tabular environment needs to be within a table environment.

The table environment is basically a floating table and LaTeX will place it at the earliest location without causing excessive space.

i.e. if the table cannot fit at the location of content where entered, then LaTeX will put the table on the next page and add content that follows the table at the current location.

- Usage: `\begin{table}[loc] ... \end{table}`
- The caption can be either at the top i.e. before the table contents or at the bottom i.e. after the table contents.
- The caption is specified using `\caption[short title]{title}`
- The short title is the text that will appear in the list of contents (TOC for tables) if present else title will be used.
- To display a list of tables in the table of contents, add the command `\listoftables` at the location you want it to appear usually after the table of contents.
- The List of Tables (LoT) name can be changed by using the command `\renewcommand{\listtablename}{New List of Tables Title}`
- You need to have a caption to cross reference tables in your document for e.g. in Table ?? we show an example of a floating table.
\begin{center}
\begin{table}[ht]
\caption{First example of table with caption}\label{table1}
\begin{tabular}{|l|l|l|}
\hline
\multicolumn{3}{|c|}{Team sheet} \\
\hline
Goalkeeper & GK & Paul Robinson \\
& LB & Lucus Radebe \\
& DC & Michael Duberry \\
& DC & Dominic Matteo \\
& RB & Didier Domi \\
\hline
Defenders & LB & Lucus Radebe \\
& DC & Michael Duberry \\
& DC & Dominic Matteo \\
& RB & Didier Domi \\
\hline
Midfielders & MC & David Batty \\
& MC & Eirik Bakke \\
& MC & Jody Morris \\
\hline
Forward & FW & Jamie McMaster \\
\hline
Strikers & ST & Alan Smith \\
& ST & Mark Viduka \\
\hline
\end{tabular}
\end{table}
\end{center}

Table 1: First example of table with caption

<table>
<thead>
<tr>
<th>Team sheet</th>
<th>Goalkeeper</th>
<th>Defenders</th>
<th>Midfielders</th>
<th>Forward</th>
<th>Strikers</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GK</td>
<td>LB</td>
<td>MC</td>
<td>FW</td>
<td>ST</td>
</tr>
<tr>
<td></td>
<td>Paul Robinson</td>
<td>Lucus Radebe</td>
<td>David Batty</td>
<td>Jamie McMaster</td>
<td>Alan Smith</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Michael Duberry</td>
<td>Eirik Bakke</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Dominic Matteo</td>
<td>Jody Morris</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>Didier Domi</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

\begin{tabular}{|l|l|l|}
\hline
Goalkeeper & GK & Paul Robinson \\
& LB & Lucus Radebe \\
& DC & Michael Duberry \\
& DC & Dominic Matteo \\
& RB & Didier Domi \\
\hline
Defenders & LB & Lucus Radebe \\
& DC & Michael Duberry \\
& DC & Dominic Matteo \\
& RB & Didier Domi \\
\hline
Midfielders & MC & David Batty \\
& MC & Eirik Bakke \\
& MC & Jody Morris \\
\hline
Forward & FW & Jamie McMaster \\
\hline
Strikers & ST & Alan Smith \\
& ST & Mark Viduka \\
\hline
\end{tabular}
- LaTeX cannot manage pictures directly.
- We need to load the `graphicx` package in the preamble of the document.

\begin{verbatim}
\usepackage[options]{graphicx}
\end{verbatim}

- This package accepts as an optional argument the external driver to be used to manage pictures,

  \begin{itemize}
  \item **dvips**: (default) if you are compiling with latex to get a DVI and you want to see your document with a DVI or PS viewer.
  \item **dvipdfm**: if you are compiling with latex to get a DVI that you want to convert to PDF using dvipdfm.
  \item **pdftex**: (default if compiling with pdflatex), if you are compiling with pdftex to get a PDF that you will see with any PDF viewer.
  \end{itemize}

- Supported Image Formats if compiling with

  \begin{itemize}
  \item **latex**: EPS (Encapsulated PostScript)
  \item **pdflatex**: JPG, PNG, PDF. You can use EPS if using the `epstopdf` package with compiler command \texttt{pdflatex -shell-escape file.tex}
  \end{itemize}
You can include images using the command

\texttt{\includegraphics[attr1=val1, attr2=val2, ..., attrn=valn]{imagename}}

where the attributes can be

- \texttt{width=xx} Specify the preferred width of the imported image to xx cm (or in, pt).
- \texttt{height=xx} Specify the preferred height of the imported image to xx.
- \texttt{keepaspectratio} This can be set to either true or false. When true, it will scale the image according to both height and width, but will not distort the image, so that neither width nor height are exceeded.
- \texttt{scale=xx} Scales the image by the desired scale factor. e.g. 0.5 to reduce by half, or 2 to double.
- \texttt{angle=xx} This option can rotate the image by xx degrees (counter-clockwise).
- \texttt{trim=l b r t} This option will crop the imported image by l from the left, b from the bottom, r from the right, and t from the top. Where l, b, r and t are lengths.
- \texttt{clip} For the trim option to work, you must set \texttt{clip=true}.

On Page 41, the simple latex document was inserted using the command

\texttt{\includegraphics[height=\texttt{slidewidth},angle=90]{./asimple.ps}}

If you need to include a caption, then you need use the figure environment,

\begin{figure}[loc]
\includegraphics[attr1=val1, attr2=val2, ..., attrn=valn]{imagename}
\caption{Figure Caption}
\end{figure}
In WYSIWYG document processors, it is common to put tables and figures in the middle of the text.

Professional documents, however, often make it a point to print tables and figures on a dedicated page so that they do not disrupt the flow.

From the point of view of the source code, one has no idea on which page the current text is going to lie, so it is hardly possible to guess which page may be appropriate for our table.

LaTeX can automate this task by abstracting objects such as tables and pictures, and decide for us where they might fit best. This abstraction is called a float.

The table and figure environment create a table and figure as float respectively.

For Example: \begin{table}[loc] ... \end{table} OR \begin{figure}[loc] ... \end{figure}

where loc is the position of the table (or figure) and can be one of the following:

- \texttt{h} : Print the table (or figure) on the current page with content.
- \texttt{t} : Print the table (or figure) at the top of the page.
- \texttt{b} : Print the table (or figure) at the bottom of the page.
- \texttt{p} : Print the table (or figure) as a float on pages along with other floating tables and figures in sequence.

Default location is \texttt{tbp} i.e. LaTeX will try to put the floating table or figure first at the top of the page, bottom of the page or on a separate page depending on the accompanying content.
Wrap Up

References

Creating \LaTeX\ Presentations


Beamer: The most popular package for creating presentations.
- Template: https://github.com/alexpacheco/LehighBeamer

Powerdot: This presentation was created using the powerdot package.
- Source Files: https://github.com/alexpacheco/latex

Prosper: https://www.ctan.org/pkg/prosper?lang=en

HA-prosper: https://www.ctan.org/pkg/ha-prosper?lang=en

Seminar: https://www.ctan.org/pkg/seminar?lang=en